Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The Use of the k-ω SST Turbulence Model for Mathematical Modeling of Jet Fire

Tytuł:
The Use of the k-ω SST Turbulence Model for Mathematical Modeling of Jet Fire
Wykorzystanie modelu burzliwości k-ω SST do modelowania matematycznego pożaru strumieniowego
Autorzy:
Lewak, Michał Wojciech
Tępiński, Jarosław
Klapsa, Wojciech
Data publikacji:
2022
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
jet fire
mathematical modelling
computational fluid dynamics
pożar strumieniowy
modelowanie matematyczne
obliczeniowa mechanika płynów
Źródło:
Safety and Fire Technology; 2022, 59, 1; 28--40
2657-8808
2658-0810
Język:
angielski
Prawa:
CC BY-SA: Creative Commons Uznanie autorstwa - Na tych samych warunkach 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Aim: The purpose of this study is to verify the usability of the k-ω SST turbulence model for the description of the combustion process during a vertical propane jet fire. Simulating a jet fire using computational fluid mechanics involves an appropriate selection of a mathematical model to describe the turbulent flow. It is important as the variables from this model also describe the rate of the combustion reaction. As a result, they have an impact on the size and shape of the flame. The selection of an appropriate model should be preceded by preliminary simulations. Project and methods: For this purpose, a vertical jet fire in no wind conditions was selected for simulation. Consequently, it was possible to develop a two-dimensional axisymmetric geometry. A good numerical mesh can be applied to such axisymmetric geometry. Selected process conditions allowed to create an axisymmetric numerical grid. Its values, proving the quality, are shown in a chart demonstrating the distribution of the parameter quality depending on the number of elements from which the numerical grid was built. In the work, a two-stage model of the combustion reaction was selected in order to verify whether the area in which the mole fraction of carbon monoxide will have significant values is so large that the selected kinetic reaction model will have an impact on the flame length. Results: Three simulations of jet fire taking place in the direction opposite to the force of gravity were performed. The simulations performed allowed for setting the basic Lf parameter, which determines the flame length. Additionally, the length of the mixing path slift-off, needed to initiate the combustion reaction, was determined. The simulations performed allowed for comparing significant parameters characterizing the flame with the parameters calculated using correlations included in the literature on the subject. Due to this comparison, it was possible to define an interesting scope of research work, because the length of the gas mixing path determined from the CFD simulation differed significantly from the values calculated from the correlation. Conclusions: Interestingly, such large differences between CFD results and correlations were not observed for the Lf parameter. The correlations based on the Froude number give slightly higher values of the flame length than the results of the CFD simulation. On the other hand, the correlation based on the Reynolds number gives slightly lower values of the Lf parameter than the values obtained from the CFD calculations. This may indicate that the effects related to the inertia forces (Re number) better describe the simulation process conditions than the correlations based on the influence of inertia forces and gravity forces (Fr number).

Cel: Celem tego opracowania jest sprawdzenie przydatności modelu k-ω SST do opisu procesu spalania podczas pionowego pożaru strumieniowego propanu. Symulacja pożaru strumieniowego przy pomocy obliczeniowej mechaniki płynów wiąże się z odpowiednim wyborem modelu matematycznego służącego do opisu przepływu burzliwego. Jest to o tyle ważne, że zmienne z tego modelu opisują również szybkość reakcji spalania, a więc mają wpływ na rozmiar i kształt płomienia. Dobór odpowiedniego modelu powinien być poprzedzony symulacjami wstępnymi. Projekt i metody: Do symulacji wybrano pionowy pożar strumieniowy w warunkach bezwietrznych. Dzięki temu opracowana została dwuwymiarowa osiowosymetryczna geometria, na którą możliwe jest nałożenie dobrej siatki numerycznej. Wybrane warunki procesowe pozwoliły na stworzenie osiowosymetrycznej siatki numerycznej, której wartości świadczące o jakości uwidoczniono na wykresie przedstawiającym rozkład jakości parametru w zależności od liczby elementów, z jakich zbudowano siatkę numeryczną. Na podstawie dwuetapowego modelu reakcji spalania sprawdzono, czy obszar, w którym ułamek molowy tlenku węgla będzie miał duże wartości wpłynie na długość płomienia w wybranym modelu kinetycznym reakcji. Wyniki: Wykonane zostały trzy symulacje pożaru strumieniowego odbywającego się w kierunku przeciwnym do działania sił grawitacji. Pozwoliły one na wyznaczenie podstawowego parametru Lf , który określa długość płomienia. Dodatkowo wyznaczona została długość drogi mieszania slift-off , która jest niezbędna do zapoczątkowania reakcji spalania. Wykonane symulacje pozwoliły na porównanie istotnych parametrów charakteryzujących płomień z parametrami obliczonymi przy pomocy korelacji zawartych w literaturze przedmiotu. Wnioski: Porównanie wyżej wymienionych parametrów umożliwiło określenie ciekawego zakresu pracy badawczej, ponieważ wyznaczona z symulacji CFD długość drogi mieszania gazu znacząco różniła się od wartości obliczonych z korelacji. Co ciekawe, tak dużych rozbieżności między wynikami CFD a korelacjami nie zaobserwowano dla parametru Lf . Przy czym korelacje oparte o liczbę Froude’a podają nieco większe wartości długości płomienia niż wyniki symulacji CFD. Natomiast korelacja oparta o liczbę Reynoldsa podaje nieco mniejsze wartości parametru Lf niż wartości otrzymane z obliczeń CFD. Może to świadczyć o tym, że efekty związane z siłami bezwładności (liczba Re) lepiej opisują warunki procesowe niż korelacje oparte o wpływ sił bezwładności i sił ciężkości (liczba Fr).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies

Prześlij opinię

Twoje opinie są dla nas bardzo ważne i mogą być niezwykle pomocne w pokazaniu nam, gdzie możemy dokonać ulepszeń. Bylibyśmy bardzo wdzięczni za poświęcenie kilku chwil na wypełnienie krótkiego formularza.

Formularz